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Preface

A reading of George Birkhoff's
Aesthetic Measure provided the
inspiration for this work. Birk-
hoff's concerns for order and
complexity in art led him to study
different species of repetitive or-
nament including the seven band
groups and the seventeen
wallpaper groups. He provided
two illustrations for each of those
groups. Only two. | carefully
studied his illustrations with the
hope that | could generate vari-
ations of my own. | had only
moderate success, however, and
not until | reviewed the works of
Weyl, Toth, and Buerger was |
able to generate patterns easily.
Even then | found it difficult to
duplicate and imitate the more
complex—and more
interesting—designs in Owen
Jones's Grammar of Ornament.
On the one hand there ap-
peared to be an elegant mathe-
matical system of pattern classifi-
cation used by chemists and
crystallographers, and on the
other a wealth of repetitive de-
signs in source books used by ar-
tists and graphic designers. Birk-
hoff and Weyl were comfortable

in both worlds. After all, crystal
sections and wallpaper designs
obey the same structural
rules—testimony to the harmony
that underlies natural and man-
made forms. Still, crystallog-
raphers and chemists have
generally shown limited interest
in the source books of artists, and
artists know little of the underly-
ing structural anatomy of repeti-
tive groups.

This work attempts a synthesis
of the two perspectives. Itis
an encyclopedia, a reference
handbook, of repetitive designs
organized in accord with es-
tablished crystallographic no-
tions of symmetry and symmetry
operations.

On the crystallographic side |
have adhered to the widely ac-
cepted system of classification
and notation used in Henry and
Lonsdale’s International Tables
for X-Ray Crystallography. For the
band ornaments | have adopted a
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readily understood variation on
that notation including the use of
the symbols tm and mt as sug-
gested by Martin Buerger, from
whom | also borrowed the idea of
using patterns of commas to
picture the groups.

Despite its crystallographic
backbone, however, the book is
directed primarily to the practic-

ng artist and designer. After an
nitial reading, and perhaps a few
practice exercises, the graphic
artist can use the chapter head-
ngs, running heads, and charts
o locate any given structural ar-
rangement. As a practical aid to
design, the book provides exten-
sive discussions of unit cells,
fundamental regions, centered
nexagons, and other generating
units. In addition the appendix
offers some of the mathematics
that underlies repetitive struc-
ture. This volume, then, should
enable the artist to produce
original designs while having at
nis fingertips numerous exam-
ples of structurally similar de-
signs from different cultures and
nistorical periods.

The illustrative examples in-
clude designs from nature and
architecture as well as ornamen-
tal patterns whose origins range
from the first and second mil-
leniums before Christ to the
twentieth century. Several works
are included of the late Dutch
artist M. C. Escher, whose tech-
nique and use of color symmetry
have been analyzed by Caroline
Macgillavry in Fantasy & Sym-
metry. | have provided discus-
sions of Escher’s design symme-
tries in order to assist the reader
in discovering how to generate
additional Escher-like designs.
For illustrative purposes | have
also included several original
designs, especially in the last
chapter, which provides a visual
recapitulation of the book.

| am especially indebted to the
M. C. Escher Foundation, Haags
Gemeentemuseum, The Hague,
Netherlands, for permission to
reproduce the designs of M. C.
Escher. | wish also to acknowl-
edge the free use of many de-

signs found in the Dover Pictorial

Archive Series. Some of the
books that make up that series
can be found among the refer-
ences.

Mollie Moran drafted most of
the illustrations and | am deeply
indebted to her. | would also like
to thank Didi Stevens for her
editorial review and Arthur Loeb
for his reading of the manuscript
and most helpful suggestions.



See how various the forms and
how unvarying the principles.

1
Symmetry Groups

Owen Jones
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1
Basic Operations

Here and elsewhere we shall not
obtain the best insight into things
until we actually see them grow-
ing from the beginning.

Aristotle

The variety of ornamental pattern
is extraordinary. All around us are
patterns in textile designs, tiled
floors, wallpapers, friezes, and
carpets. Animal motifs and
foliage patterns abound, but
more numerous still are repe-
titions of abstract forms—circles,
crescents, rectangles, and ar-
rangements of stripes and lines.
In the natural world too you find
repetitive patterns—in the arms
of the starfish, in a spiral galaxy,
and in the arrangement of leaves
on the branches of a tree. Every
culture and historical period has
produced unique forms and to-
day’s designers are busy turning
out more.

Symmetry Groups
Mathematicians concerned with
the theory of groups hold an in-
teresting view of that variety.
They ignore particularities and
consider the ways that a motif re-
peats, the manner in which one
part of a pattern relates to the
others. The possibilities turn out
to be strictly limited. Patterns that
run in one direction, linear band
ornaments, like those on the bor-
ders of wallpaper or the edges of
crockery, come in only seven
basic types—irrespective of
whether the motifs are stylized
scorpions along the edge of a
Persian rug or leaves of honey-
suckle on a Greek vase. Fur-

thermore, you can make only
seventeen two-dimensional pat-
terns, patterns that cover a
surface—like ceramic mosaics,
tiled floors, and arrangements of
brickwork.

It was in 1935 that von Franz
Steiger proved that only seven-
teen two-dimensional patterns
exist. Unfortunately, Steiger’'s
proof [8: pp. 235-249] makes use
of abstract topological concepts
that are not particularly useful to
designers of patterns. A more
useful approach is to catalog
patterns in terms of their symme-
tries. Although repetitive designs
have arbitrary features—after all,
they may consist of clusters of
triangles, birds, or flowers—their
symmetries are fixed. Symmetries
describe the ways that the arbi-
trary motifs can be manipulated.

Common Structures

Figures 1 and 2 illustrate the way
in which the same structure can
underlie different designs. Figure
1.1 shows part of a band of
stylized leaves from a Persian or-
nament of the fifteenth century.
This band illustrates one of

the seven linear symmetry groups.
Notice that the lightly shaded
leaves that point up have pre-
cisely the same shape as the
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neavily shaded ones that point
sown. Consequently, if you turn
the whole band upside-down, it
nas exactly the same appearance
xcept that the colors reverse.
ther way, the outlines of the
eaves are precisely the same.
Furthermore, each leaf is sym-
metrical in that its right-hand side
s the mirror image of its left-hand
side. Assuming that the band ex-
t=nds indefinitely to the right and
1o the left, you can see that the
Jesign as a whole is symmetrical.
41 the center of any leaf, the
sight-hand side of the entire band
s the mirror image of the left-
nand side. Later we will study ro-
tztions and mirror reflections in
more detail and establish a pre-
=ise meaning for the term sym-
metry group, but for now let us
abserve simply that the band or-
nament of figure 1 has the same
zppearance whether upright or
upside-down and that the left-
nand side is the mirror image of
the right-hand side.

Can we find other examples of
the same structure? Consider the
nand ornaments in figure 1.2.
Frame (a) shows a band from
Srazil dating from the fourth or
fifth century; frame (b), a strap
ornament from Elizabethan En-
gland; frame (c¢), an ornamental
frieze from ancient Greece; and

m o

frame (d), a contemporary design
from the United States. Although
these ornaments differ from the
Persian ornament of figure 1.1,
they have exactly the same un-
derlying structure. Each band
looks the same whether upright
or upside-down, and each band
can be divided so that one half is
the mirror image of the other half.
Whether Persian, Brazilian, En-
glish, Greek, or from the United
States, whether abstract or floral,
whether ancient or modern, all
these designs follow the same
plan; all have the same anatomy;
all belong to the same species of
ornament or symmetry group.

Knowledge of symmetry groups
can be a great aid to designers.
Suppose, for example, that you
manufacture patterned concrete
blocks. What varieties of design
can you offer your customers?
How many different walls with re-
peating patterns can you make
from different arrangements of a
single motif? If you arrange the
blocks in accord with the rules,
you can quickly obtain the an-
swers. You will find that any asym-
metrical motif can be stacked
with itself to create seven linear
bands and seventeen planar
patterns.
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Symmetry Groups

Four Symmetry Operations
You will gain a good start toward
understanding the structure of
regular patterns when you realize
that a two-dimensional motif can
repeat in only four different ways.
These four types of repetition, or
symmetry operations as they are
called, are worth studying be-
cause combinations of them pro-
duce all of the different symmetry
groups. The four operations are
(1) translation, in which the motif
moves up or down, left or right, or
diagonally while keeping the
same orientation; (2) rotation, in
which the motif turns; (3) reflec-
tion, in which the motif reflects as
in a mirror; and (4) glide reflec-
tion, in which the motif both
translates and reflects.
Repetition of the asymmetric
comma shown infigure 1.3 illus-
trates these four operations in an
elegant fashion. For the ancient
Persians the comma—the famil-
iar paisley pattern as well as our

common punctuation mark—was
a venerated motif. Some scholars
consider the mark a stylized
flame and trace its history
through Zoroastrian cults to the
primitive worship of fire. Others
prefer the tale that an Iranian ar-
tist's young son dipped his hand
into his father’s pot of paint and
imprinted a piece of linen with the
side of his half-curled fist.

Translation

The commas in figure 1.4 show
three examples of the first sym-
metry operation, translation. The
frames of the figure show the
commas translated horizontally,
vertically, and diagonally. You
can imagine that the Iranian boy
stood opposite you as you look at
the page and, working with his
left hand, kept his wrist stiff as he
made his marks. Each comma in
a framed pair is a translation of
the other. This idea is important
because every operation is a
two-way street. Every operation
shifts the second image into the
first image as well as the first
image into the second. If you view
all three frames as a totality,
commas in any pair are each
other's translation, irrespective of
whether they reside in the same
frame.

)
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Basic Operations

Rotation

Figure 1.5 illustrates the second
symmetry operation with three
s=ts of commas. In these exam-
p'es the boy turned his fist be-
ween the first and second print
of @ach pair. It is important to
r=alze that no translations are in-
woiwed: only rotations. If you ro-
%2%= one comma of a pair around
e point marked in the frame,
you can superimpose it exactly
o the other comma. To be cer-
%=n_ redraw one of the commas in
e first frame on a piece of trac-
™2 paper and, with your pencil,
2 the paper to the dot that
marks the center of rotation; you
zam then turn the paper so that
e comma you have drawn coin-
©x2=s with the other. Do the same
fior the commas in the other
Srames Now if you consider the
“mree frames together, you find
#nat any comma in any frame is a
motation of any of the others. Try
%o ‘ocate, for example, the center
oF rotation that relates the lower
comma in the top frame to the
woper comma in the middle
Srame_ See if you can locate
swmiar centers of rotation for
other pairs.

As you study figure 1.5 you will
discover that distant centers of
rotation, or rotocenters as they
are commonly called, produce
apparent translations. As a case
in point, note the apparent trans-
lation between the upper com-

mas in the top and middle frames.

Those commas are related by
rotation through a distant roto-
center.

Figure 1.6 shows the idea with
greater clarity. The dot in the top
frame is the center of rotation for
all three pairs of commas. Each
successive pair, at increasing
distance from the rotocenter,

shows less twist and more sweep.

Consequently we can see that
pure translation is but a special
case of rotation—rotation
through an infinitely small angle
or, what amounts to the same
thing, rotation around a center
that lies infinitely far away.

9

959

1.6
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Through the Looking Glass

How did the boy make the marks
in the frames of figure 1.7? He
used first one hand and then the
other. The commas in each pair
are similar and yet as intrinsically
different as a left and a right
hand, for as with opposite hands,
one comma is the mirror image of
the other.

If you place a small hand-mirror
along the centered line in each
frame, the comma in front of the
mirror will reflect into the mirror
to adopt the position of the other
comma. The mirror lines in the
figure actually represent ideal
mirrors, mirrors without thick-
ness that reflect perfectly from
both sides. Again, then, you must
look at a given pattern in its en-
tirety, remembering that a sym-
metry operation cuts both ways:
what it does to one image it does
in reverse to the complementary
image. When the mirror line cuts
acomma, as in the third frame,
both pieces reflect so that a com-
plete comma and its reflected
image lie on top of one another.
You should note in passing that
in this book mirror lines are al-
ways represented by solid lines.

So reflection, the third sym-
metry operation, differs dramati-
cally from translation and rota-
tion. A motif that is translated or

rotated glides across the plane
surface, and its image at the start
can be directly superimposed on
its image at the finish or any-
where along the way. The opera-
tion of reflection lacks that con-
tinuity. The motif either reflects
or not; there is no in-between.
Furthermore, the motif does not
stay on the surface of the plane
throughout the operation. It
jumps out of the plane and flips
over on its back: it reverses. Con-
sequently, to obtain a reflection
without using a mirror, you need
only view from the reverse side a
motif drawn on the front of a
piece of tracing paper. Looking
through the paper automatically
reverses the image.

At this point you might wish to
tease your brain with the question
of how you could reverse your
right hand to get a left hand. The
answer is that you can look into a
mirror. Otherwise, in order to
transform a right hand into a left,
you must lift it out of the third di-
mension into the fourth, turn it
over, and bring it back—a bit dif-
ficult. Apparently though, you do
something similar when you
transform your right-hand glove
into a left-hand glove by turning it
inside out.

Because reversal involves a
flip rather than a glide, mirror
reflection is called an indirect or
“improper’’ operation. In contrast
rotation and translation, which
involve only simple displace-
ments, are called direct or
“proper’ operations.

Glide Reflection

What about the fourth symmetry
operation? It is also indirect and
is called glide reflection. As illus-
trated in figure 1.8, the image re-
verses as with mirror reflection,
but in addition it glides. Instead of
a mirror line, we have a glide line,
a line that marks the path of a
translation. This glide line runs
vertically, diagonally, and hori-
zontally in the three frames, much
like the mirror lines in figure 1.7.
But as you compare the frames of
the two figures, you see that the
commas in each frame of figure
1.8 translate as well as reflect. In
figure 1.8 you may be able to lo-
cate the unmarked glide line be-
tween the comma on the right in
the top frame and the comma on
the left in the middle frame.
Perhaps you can also locate un-
marked glide lines between the
other pairs of commas. Again in
passing, you should note that
dotted lines like those shown in
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each frame of figure 1.8 are used
throughout this book to represent
lines of glide reflection.

Just as translation is a special
case of rotation, mirror reflection
is a special case of glide reflec-
tion. Mirror reflection is glide re-
flection with zero glide. Thus the
four symmetry operations—
translation, rotation, reflection,
and glide reflection—reduce to
only two—rotation and glide
reflection.

Architectural Examples

Figure 1.9 is especially revealing.
It illustrates the use of all four op-
erations in the development of
architectural plans for housing at
Pessac, near Bordeaux. The
plans were conceived by the
Swiss architect, Le Corbusier. In
frame (a) he translated a basic
plan to make two identical units
side-by-side. In frame (b) he re-
peated a unit after rotating it 180°
so that two units interlock. In
frame (c) he mirror-reflected the
plans and in frame (d) he made a
glide reflection.

7
Basic Operations
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Symmetry Groups

By way of review, see if you can
identify the relation of each un-
shaded comma in figure 1.10 to
the shaded one in the center. You
. should find two glide reflections
and one translation, rotation, and
mirror reflection. Which opera-
tions are direct? Which indirect?

1.10

Exercises

1. What operations describe the
relation between the two triang-
les in each frame of figure 1.11?
What special characteristic of
the triangles in the last frame
leads you to name two different
operations?

2. Sprinkle cardboard cutouts of
an asymmetric motif on a surface
and describe the relations among
them. How are those that flip over
related to those that do not?

3. Infigure 1.12, reflect the
comma in mirror linea. Then re-
flect the resulting image in line b.
How does the final image relate to
the original comma? Relative to
the distance between mirror
lines, how far is the final image
from the original? Would the re-
sults be the same for every motif
reflected in parallel mirrors?

4. In figure 1.13, reflect the
comma in mirror linea. Then re-
flect the resulting image in mirror
line b. How is the final image re-
lated to the original comma? If
the angle between the two lines is
45°, what is the angle between the
final image and the original?
What would be the angle between
the final and original image if the
angle between the lines was 90°?

5. In each frame of Figure 1.14,
reflect the comma in mirror line a,
the resulting image in line b, and
that next image in linec. In each
frame, how does the final image
relate to the original comma?
(Don’t worry about overlapping
images.)

6. Show that a translation results
from successive reflections in
two parallel mirrors, a rotation
results from reflection in two mir-
rors that intersect, and a glide re-
flection results from successive
reflections in two parallel and one
perpendicular mirror. (This exer-
cise should provide a check for
the others.)
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2
How Operations
Generate Themselves

We are no longer preoccupied
with mere facts, but with the rela-
tions which the facts have for one
another—with the whole which
they form and fill, not with the
parts.

Jacob Bronowski

With the aid of displacements and
reversals of commas, we have ex-
amined the four symmetry opera-

tions that produce repetition. We

are ncw in a position to tackle the
meaning of symmetry.

Symmetry

If the comma is an asymmetric
figure, what is a symmetric one?
The answer is that a symmetric
figure has repetitive parts. And
how might the parts of a figure
repeat? Just as we have dis-
covered: by translation, rotation,
reflection, and glide reflection.

Letters A, B, and C, for in-
stance, are symmetrical through
reflection. They enjoy bilateral
symmetry in which one half is the
mirror image of the other. A mir-
ror through the center of these
letters leaves their appearance
unaltered. And this is the critical
point. A figure is symmetrical if a
symmetry operation such as a
mirror reflection leaves its ap-
pearance unchanged.

Letters N and Z are symmetrical
by virtue of rotation. A 180°-turn
leaves their appearance un-
changed because one half of the
letter is exactly like the other. You
may find the symmetry of Nand Z
surprising since we commonly
use the word symmetrical to
mean bilaterally symmetrical. We
would all agree, for example, that

the letter A is symmetrical. Al-
though the letters N and Z are not
symmetrical in the manner of A,
they are also symmetrical since
their parts repeat by rotation.
Similarly, the word “bud" is
symmetrical because of mirror
reflection, the word “pod” is
symmetrical under rotation, and
the word “dodo’’ is symmetrical
by virtue of translation.

Symmetry Groups
We are closing in on the defini-
tion of the term symmetry group.

Consider the pattern in figure
2.1. The center is marked with a
small diamond, which is the con-
ventional indication of a fourfold
rotation. You can see that four
operations (rotations) displace
the pattern to four equivalent
positions: (1) rotation through a
quarter-turn or 90°; (2) through a
half-turn or 180°; (3) through a
three-quarter turn or 270°; and (4)
through a full turn or 360°, back
to the original position.

Figure 2.2 portrays another
pattern with the same symmetry.
It is important to realize that al-
though each arm of figure 2.2
contains two commas related by
a mirror, the individual mirrors do
not reflect the entire pattern into

;i—————_ﬂ
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equivalent positions. The pattern
then—as a whole—has only
fourfold rotational symmetry.
Consequently, figures 2.1 and 2.2
belong to the same symmetry

group.

A Definition

Now then, the definition of the
term symmetry group. A sym-
metry group is a collection of
symmetry operations that to-
gether share three characteris-
tics: (1) each operation can be
followed by a second operation to
produce a third operation that it-
self is a member of the group, (2)
each operation can be undone by
another operation, that is to say,
for each operation there exists an
inverse operation, and (3) the
position of the pattern after an
operation can be the same as
before the operation, that is,
there exists an identity opera-
tion which leaves the figure
unchanged.

You can see that the definition
is very abstract. Perhaps though,
you can see how the operations
that rotate figures 2.1 and 2.2
form a symmetry group. Here is
an enumeration that accords with
the definition. (1) The 90° rotation
can be followed by a 180° rotation
to produce a 270° rotation which
itself is a member of the group.
(2) A 90° rotation can be undone

by a 90° rotation in the opposite
direction. Any of the other rota-
tions can similarly be followed by
inverse rotations. (3) A full turn of
360° brings the pattern back to
where it began. Any rotation that
is a multiple of 360° also leaves
the pattern in the same position.

Generating Groups
Where do we go from here? At

this point we can see how the op-

erations feed upon themselves to
produce still larger groups. As an
example, let us add another op-
eration to the fourfold center. Let
us pass a mirror directly through
its heart and study the results
step-by-step.

Figure 2.3a shows a mirror
through a fourfold center, with
each of the four arms identified.
As indicated in figure 2.3b, arms
a,b,c,andd reflect to produce
armsa’,b’,c’',andd’'. The result
of all those reflections appears in
figure 2.3c. Now you find that the
pattern contains four intersecting
mirrors. A single mirror through a
fourfold rotocenter produces
automatically four intersecting
mirrors.

All the reflections and the rota-
tions together form a symmetry
group because they obey the fol-
lowing conditions: they produce

11
How Operations Generate
Themselves
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Symmetry Groups

additional reflections and rota-
tions, they can be undone by in-
verse operations, and some com-
binations of them leave the posi-
tion of the pattern unchanged.
The entire symmetry group con-
tains eight operations: four re-
flections and four rotations.

All these operations leave the
appearance of the pattern
unaltered.

As another illustration of the
manner in which symmetry
groups come into being, consider
placing the mirror line nextto a
fourfold design instead of
through its heart. The arrange-
ment is depicted in figure 2.4a.

Taking the results step-by-step,
you find that the mirror reflects
the rotating pattern to produce
the double image shown in figure
2.4b. You can see how the two
rotocenters interrelate-like a pair
of oppositely rotating paddle
wheels. But this is only part of the
story, for if the original rotocenter
continues to rotate, it shifts the
mirror along with the reflected
image into the four positions
shown in Figure 2.4c. It thus pro-
duces four mirrors. At this point,

the action continues because
each mirror reflects and each
rotocenter rotates, and all to-
gether they generate, in the
twinkling of the eye, an endless
array of images in all directions
across the plane. A portion of
the infinite pattern appears in
figure 2.5.

What are the operations in
figure 2.57

First there are fourfold roto-
centers like the motif of figure
2.1, except that in the infinite pat-
tern the whole pattern rotates. In
other words, the rotating motif
consists now of more than four
commas; it includes the whole
two-dimensional plane with all
the fourfold centers and all the
mirror lines. To verify that the en-
tire pattern repeats with each 90°
rotation, draw the pattern on
tracing paper and rotate it around
each rotocenter. You will see the
entire pattern repeat again and
again. In addition to clockwise
rotations you find mirror-image
counterclockwise rotations. Both
types of rotocenter act on the
entire plane.

Next you find that the infinite
pattern has generated two differ-
ent sets of parallel mirror lines
that intersect perpendicularly.
Every mirror reflects the entire
infinite pattern into itself.
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Last, you discover twofold
rotocenters that lie on each inter-
section of the mirror lines. In ac-
cord with convention they are
marked with an oval. Figure 2.6
shows a small portion of the
twofold center in its two different
orientations. Each twofold center
contains the same symmetry op-
erations as the letter H: a vertical
reflection, a horizontal reflection,
and a 180° rotation.

As with the mirrors and the
fourfold rotations, remember that
each twofold center acts not only
on the eight commas shown in
figure 2.6 but on all the commas
in the infinite pattern. In other
words the entire pattern forms a
twofold rotocenter. Even more to
the point, the entire pattern forms
an infinite number of twofold
rotocenters. Some have the
orientation shown in figure 2.6a,
the others have the orientation
shown in figure 2.6b. In addition,
as already described, the pattern
forms an infinite number of left-
handed and right-handed four-
fold centers—plus an infinite
number of perpendicularly inter-
secting mirror lines. All these
elements are interrelated and
perfectly spaced to repeat and
regenerate endlessly. All this in-
teractive creation and re-creation
flashes into existence when a
fourfold rotation mates with a
mirror line.
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Symmetry Groups

Figure 2.5, then, illustrates one
of the seventeen two-dimensional
plane groups. It is a uniquely in-
teractive association of symmetry
operations. Of course, the repeti-
tive element could be the letter
P, a flower, or a bird, aswell as a
comma. The invariant elements
are the structural operations.

A Further Example

For comparison, let us look at
another example of the same
symmetry group. Figure 2.7
shows (a) a fourfold center, (b)
the same center reflected once,
and (c) the same center reflected
four times. Further rotations and
reflections produce the design of
figure 2.8 which, when colored,
results in the leaf pattern of figure
2.9.

This pattern occurred as a
painted decoration in a house in
Cairo in the fifteenth century. It
consists of only a single motif ex-
pressed in three different colors.
A linear band of the pattern was
depicted in figure 1.1

The interesting point is that the
leaf form in figure 2.9 performs
exactly the same maneuvers as
the comma in figure 2.5—
clockwise and counterclockwise
fourfold rotations, mirror reflec-
tions, and twofold rotations. Fig-
ures 2.5 and 2.9 express exactly
the same thought, but in different
languages.

You can now sense why there
exists a limited number of sym-
metry groups: the rotations rotate
the reflections and all the other
rotations, and the reflections
reflect each other and all the
rotations combined. All the op-
erations must interact with them-
selves to produce more of the
same sort of interaction. Each
symmetry group, then, is a closed
system of self-generating opera-
tions where all operations are
interrelated.

The Dutch artist, M. C. Escher,
who created a wealth of novel de-
signs, grasped the beauty and
lawfulness of these self-
generating operations:

There is something in such laws
that takes the breath away. They
are not discoveries or inventions
of the human mind, but exist in-
dependently of us. In a moment
of clarity, one can at most dis-
cover that they are there and take
them into account. [52: p. 40]
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Exercises

1. What symmetry operation
leaves the appearance of the
comma in figure 1.3 unchanged?
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2. What two symmetry opera-

tions make up the symmetry

group described by the commas 2.10
in the first frame of figure 1.4?

3. How many symmetry opera-
tions make up the group de-
scribed by the commas in the first
frame of figure 1.5?
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4. What operations leave un-
changed the appearance of the
letters in figure 2.10?

5. If instead of adding a mirror to

the side of the fourfold rotocenter 5 44
shown in figure 2.4a, you add it to

the side of the rotocenter shown

in figure 2.3c, would the resulting
infinite pattern contain the same
operations as the pattern of fig-

ure 2.5?7 Do you think the two in-

finite patterns would belong to

the same symmetry group?

6. What operations exist in figure
2.11? Does the pattern belong to
the symmetry group displayed in
figure 2.5?




